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Myelin figures are interfacial structures formed when certain surfactants swell in excess water. Here, I
present data and model calculations suggesting the formation and growth of myelins is due to the fluid flow of
surfactant, driven by the hydration gradient at the dry surfactant/water interface; a simple model based on this
idea qualitatively reproduces various myelin growth behaviors observed in different experiments. From a
detailed experimental observation of how myelins develop from a planar precursor structure, I identify a
mechanical instability that may underlie myelin formation. These results indicate the mixed mechanical char-
acter of the surfactant lamellar structure, where fluid and elastic properties coexist, is what enables the forma-
tion and growth of myelins.
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I. INTRODUCTION

A bit of soap left in a wet dish turns into a gelatinous
mass—the sight may be unexceptional, but the microscopic
structure of wet soap �hydrated surfactant� can be exception-
ally diverse. The disparate interactions of the surfactant mol-
ecules with themselves and with water leads to the formation
of aggregate structures, from spheres to cylinders �spherical
and wormlike micelles� to extended membranes �bilayers�;
these can further organize into yet more complex structured
phases �1�. Here, temperature, pressure, and
concentrations—of surfactants, solvents, salts, etc.—are the
principle coordinates of a potentially very complex phase
diagram.

Research into lyotropic �concentration-dependent�
surfactant/water phases have largely focused on the equilib-
rium phase diagram. The kinetic processes through which the
nonequilibrium initial state of pure surfactant and pure water
arrives at equilibrium has been subjected to relatively few
studies. Due to the strong concentration gradients, the inter-
face between pure surfactant and pure water can consist of
multiple domains of different phases, as well as metastable
structures whose origins are not understood, evolving in spa-
tially and temporally complex ways �2–5�. But even in sur-
factants whose phase diagram is fairly simple, the nonequi-
librium kinetics can result in striking interfacial instabilities
such as myelin figures �Fig. 1�.

First described in 1854 by Virchow, who pioneered the
use of microscopy in clinical pathology �6�, myelins are
micrometer-diameter cylinders consisting of concentrically
stacked bilayers and are formed when some poorly soluble
surfactants swell in excess water �2,3,7–12�. Their some-
times dramatic growth �reaching lengths of �100 �m in a
few seconds�, together with their sinuous figure, gives my-
elins a strangely lifelike appearance. 150 years after their
discovery, the origin of myelins has remained mysterious.
The equilibrium structure of myelin-forming surfactants con-
sists of planar surfactant bilayers stacked one on top of an-
other, separated by thin layers of water. Myelins, with tightly

curled bilayers, have large bending elastic energies. Why,
then, do these seemingly energetically unfavorable structures
form? Superficially, myelin formation, with the growth of
fingerlike structures from an initially flat interface, is remi-
niscent of nonequilibrium fingering processes such as the
Mullins-Sekerka instability of a solidification front �13�. But
a successful model for myelin formation based on such in-
stabilities has yet to be introduced.

The present paper proposes an alternative scenario. Due
to the large concentration gradients at the concentrated
surfactant/water interface, strong currents �of water and/or
surfactant� must be present; these can focus large stresses at
the interface, possibly leading to mechanical instabilities. I
suggest that myelin formation is due to such a mechanical
instability. Interestingly, because the mechanical properties
of the surfactant lamellar structure is anisotropic �depending
on the direction, it behaves either as a fluid or as an elastic
solid�, the myelin instability is one that has both fluid and
elastic characteristics.

This paper is organized as follows. Section II describes
three distinct myelin growth experiments; their results are
complementary and together bring a fuller more detailed pic-
ture of how myelins form and grow. In Sec. III, motivated by
the varying myelin growth behaviors observed in these ex-
periments, I introduce a simple model for myelin growth
based on the fluid flow of surfactant. The driving force be-
hind this flow is the hydration gradient at the surfactant/
water interface. Compared with experiment, this model
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FIG. 1. Myelin figures viewed using dark-field microscopy.
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qualitatively reproduces the observed myelin growth behav-
iors. Finally, Sec. IV describes in detail the formation of a
myelin from a planar lamellar structure as observed in one of
the experiments. I identify a mechanical instability which
may underlie myelin formation and which gives good agree-
ment with experimentally observed morphology and dynam-
ics. Here the coexistence of fluid and elastic properties in the
surfactant lamellar structure is crucial; in order for a myelin
to form, the surfactant lamellar structure has to flow as a
fluid and buckle as an elastic solid.

II. EXPERIMENTAL METHODS

Some of the results from the experiments described below
have been previously reported �12�; briefly summarized,
these are as follows: �1� myelins form laterally from the
edges of their parent lamellar structures; �2� myelin growth is
due to the flow of surfactant from the base and follow dif-
ferent time dependences in different experiments; and �3�
myelins grow and persist only in the presence of thermody-
namic or mechanical stress. In Secs. III and IV, I will revisit
these results, present additional data, and compare experi-
mental results with theoretical models. For this section, I will
restrict myself to describing the details of various experi-
mental methods.

A. Contact experiment

The simplest method to produce myelins is to bring into
contact a mass of appropriate surfactant with water. The sur-
factant I use is dilauroyl phospaditylcholine �DLPC�, a com-
mon phospholipid. DLPC is dissolved in chloroform �con-
centration: 20 mg/mL�; a drop of the solution is cast onto a
clean glass surface and dried in dry nitrogen overnight. Just
before use, the surfactant plaque is softened by brief expo-
sure to the humidity from a warm water bath. The softened
surfactant is carefully scrapped off and sandwiched between
two glass slides using a thin �0.15 mm� glass cover slip as
spacer. Water is then introduced into the gap via capillary
action and contacts the surfactant plaque along an extended
interface. Upon contact, myelins in dense bundles form and
rapidly grow along the water/surfactant interface �Fig. 2�.

To measure myelin growth, the experiment is observed
via digital video-equipped dark-field microscopy in low
magnification. The long thin myelins strongly scatter the in-
direct illumination and appear bright while the bulk mass of
surfactant remains dark. Thus the brightness of the video
field is proportional to the amount of myelins formed. From
the average brightness of the myelin bundles, the average
length of the myelins can be computed. This allows myelin
growth to be monitored with a much higher temporal reso-
lution than is practical by manual measurement.

B. Immersion-and-puncture experiment

Contact experiments as described previously do not in
general have a good control over the structure of the concen-
trated surfactant plaque. Ideally, one would like to start with
a well-ordered lamellar initial structure and observe if and
how myelins develop.

To prepare the ordered initial structure, DLPC in chloro-
form is cast onto a clean glass-bottomed petri dish. Once the
solvent has evaporated, the resultant surfactant plaques are
incubated at 60 °C and 100% relative humidity �r.h.� for up
to two days. At the end of this process, the plaques anneal to
form well-ordered planar structures with millimeter-size do-
mains. The plaques are cooled and dehydrated to room tem-
perature at 30% r.h. The dish holding the surfactant plaques
is then carefully flooded with water. Surprisingly, on immer-
sion, few myelins are formed from the well-ordered surfac-
tant plaques; this is in contrast to the dense thickets of my-
elins that form on the surfactant/water interface in contact
experiments.

However, myelins can be induced to form by puncturing
the planar top surface of the surfactant plaques with a sharp
needle �I use a tungsten or stainless-steel electrophysiology
electrode mounted on a micromanipulator�. On pressing the
needle into the plaque, one or more myelins will usually
form at the site of the puncture and slowly grow in length.
Presumably the puncture facilitates water invasion into the
surfactant plaque �Fig. 3�. As a clear illustration of the lateral
fluidity of the surfactant lamellar structure, by moving the
needle laterally across the plaque, the myelin can be readily
dragged along without structural disruption. For earlier
times, the growing myelin “crawls” along the surface, and its

FIG. 2. �Color online� The contact experiment. Surfactant is
sandwiched between glass slides, and water �from a syringe� is
introduced into the gap via capillary suction. Myelins form rapidly
along the interface upon contact between water and surfactant.
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FIG. 3. �Color online� �a� The immersion-and-puncture experi-
ment as observed under the microscope. �b� Schematic of the
immersion-and-puncture experiment; presumably, the puncture as a
hole of some effective size r0 which eases water invasion into the
surfactant plaque.
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contour can be easily traced by a spline curve. As the myelin
grows longer, its contour becomes convoluted and no longer
quasi-two-dimensional �2D�; at this point the myelin length
can no longer be reliably measured.

C. Drying drop experiment

The drying drop experiment is another way to grow my-
elins in a controlled way from a well-ordered planar initial
structure. The surfactant used here is dimyristol phospadityl-
choline �DMPC�; it is identical to DLPC except it has alkane
tail groups that are two carbon atoms longer. Dry DMPC
powder is dissolved in ethanol at a concentration of 50 mg/
mL. A small quantity �10 �L� of the DMPC solution is pi-
petted into a microcentrifuge tube, then rapidly and thor-
oughly mixed with de-ionized water to form a vesicle
suspension with final concentration of 0.5 mg DMPC/mL.
This method consistently produces a fine suspension with a
mean vesicle diameter of �50 nm as determined by dy-
namic light scattering. The small amount of ethanol in the
suspension does not appear to influence myelin formation in
these experiments. The same phenomenon can be observed
in experiments using ethanol-free vesicle suspensions pro-
duced �laboriously� by multiple extrusions across porous
membranes.

The experimental cell is constructed by epoxying a Teflon
o ring on to a glass slide �Fig. 4�. A small drop of the DMPC
suspension is placed inside the cell, and a glass cover slip is
placed on top of the o ring. The contact between the cover
slip and the o ring is intentionally left unsealed, allowing the
drop to evaporate slowly; a 20 �L drop will take about 2 h
to dry completely. This geometry is best suited for observa-
tion using an inverted microscope; it can also be inverted,
with the drop being pendant rather than recumbent, for ob-
servation using an upright microscope. The experiment is
kept at 30 °C.

The experiment works via the “coffee stain effect”
�14,15�. As the drop dries, the suspended surfactant is depos-

ited by capillary flow at the pinned contact line as a ring
stain. The stain is mostly disordered, but small well-ordered
multilamellar “pancakes” are also formed right on the con-
tact line. These pancakes grow slowly in size, and if one
grows sufficiently large to invade back into the drop, it will
form one or more myelins.

Drop evaporation can be halted midway through an ex-
periment by injecting a small drop of silicon oil near the
o-ring/cover slip contact using a fine pipette. Capillary action
will pull the oil into the o-ring/cover slip contact, forming an
air-tight seal. Once the sealed cell equilibrates, in �1 min,
myelins stop growing and resorb into the pancakes from
which they had developed earlier.

For this experiment to work effectively, it is important
that the contact line of the drying drop is pinned. The surface
characteristics of commercially available glass slides can
vary considerably, but the following treatment is found to
consistently yield the desired properties. Glass slides are
sonicated sequentially in toluene, methanol, and de-ionized
water. They are then etched in a reactive ion etcher using
CF4, removing �50 nm of material, followed by a short etch
with O2. Finally they are “aged” in dry nitrogen for 10–12 h
before use.

Experiments are observed using transmitted bright field
microscopy. Real-time videos and still images are captured
directly to computer using a charge coupled device camera
attached to the microscope. High-speed videos are captured
using a Kodak Motion Corder camera and transferred to
computer.

III. MYELIN GROWTH: THE FLUID FLOW OF SOAP

Neglect for the moment how a myelin forms in the first
place. In this section, let us consider what causes a myelin,
once formed, to grow. There is no reason a priori to suppose
the questions of how myelins form and how myelins grow
can be separately considered; indeed, as I will suggest in Sec.
III, myelin formation and myelin growth arise from the same
phenomenon—the fluid flow of surfactant driven by the gra-
dient in water concentration. Nevertheless, it turns out to be
both convenient and natural to consider these two questions
separately.

As previously reported, myelins grown in three experi-
mental setups described in Sec. II follow different time de-
pendences �12�. In contact experiments, it has been well
documented that the length L of the myelin bundles grows as
L� t1/2 �Fig. 5�a��. By contrast, myelins in drying drop ex-
periments grow linearly in time, L� t �Fig. 5�c��. Myelin
growth in immerse-and-puncture experiments follow yet a
third time dependence which cannot be easily described by
any simple function �Fig. 5�b��. A successful understanding
of how myelins grow should describe all these different be-
haviors.

From the drying drop experiment, we know myelins grow
by the flow of surfactant from the root; from the contact-and-
immersion experiments, we know that applying osmotic
stress can suppress myelin formation �12�. For myelin-
forming surfactants, the surfactant chemical potential �s de-
creases sharply with increasing �, the local water fraction in

vesicle suspension drop
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20 µm

�
�
�
�
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FIG. 4. �Color online� Drying drop experiment: myelins grow
from well-ordered lamellar pancakes located at the contact line of a
slowly evaporating water drop.
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the lamellar structure, reaching a minimum when �=�eq
�0.5, the fully swollen value �16�. If the surfactant sample is
not uniformly hydrated, the hydration gradient ��s���x�� is
a thermodynamic pressure difference; here �s is the surfac-
tant chemical potential, and ��x� is the local water fraction
in the surfactant sample. Provided the surfactant molecules
are mobile, the hydration gradient can drive a surfactant flow
from regions with low water content to regions of higher
water content. In the simplest case, one can model the volu-
metric surfactant flow as

Js = − �s � �s���x�� � �s�s
eq � ��x� � � � ��x� , �1�

where �s is the surfactant mobility and �s
eq�kBT is the fully

hydrated surfactant chemical potential; ���s�s
eq is therefore

a diffusion constant. Myelins result when this flow breaks
through the initial surfactant/water interface S, and the
growth rate given by

dL

dt
= Js · n̂�S = � � ��x� · n̂�S, �2�

where L is the myelin length and n̂ is the outward unit nor-
mal on S. Generally speaking, surfactant flow is not the only
one present; water can flow too. The hydration profile ��x�
can evolve in time, for example, as water permeates into the
dehydrated surfactant,

���x,t�
�t

= D�2��x,t� , �3�

where D is the diffusion constant for water permeation. The
full dynamics of myelin growth arises from the coupling of
Js to �. In particular, since transverse surfactant exchange
between adjacent but unconnected bilayers is negligible in
myelin-forming surfactants �17�, the surfactant diffusion
constant �= ��	 ,��� is a tensor whose transverse component
�� is zero; therefore surfactant flow is possible only if the
hydration gradient has a lateral component. As I will show
below, once the proper boundary and initial conditions are
imposed, this minimal set of ingredients are sufficient to re-
produce qualitatively all the observed myelin growth behav-
iors.

It is useful here to have an estimate of the values of the
transport coefficients �	 and D. The lateral diffusion of sur-
factant molecules on bilayers has been well studied. In the
limit of small driving forces, one can identify �	 with
the bilayer lateral surfactant diffusion constant, �	

�2–3 �m2 /s. On the other hand, how water moves within
a surfactant lamellar structure has not been studied in detail,
and I rely instead on the following estimate: if the movement
of water within a surfactant sample is rate limited by the
permeation of water across bilayers, then in the limit of low
forcing, D�Kdw, where K is the bilayer permeability and dw
is the interbilayer separation �18–20�. For DMPC, K
�2 �m /s, dw�3 nm, yields D�6�10−3 �m2 /s.

A. Contact experiment

In the contact experiment, myelins form at the extended
interface between a large mass of dry surfactant and bulk
water �Fig. 2�. The situation may be simplified as a semi-
infinite domain of surfactant �x�0� contacting a semi-
infinite domain of water �x	0�, with the interface at x=0.
The problem reduces to a system of two one-dimensional
equations,

��

�t
= D

��

�x2 and
dL

dt
= �̄

��

�x
�x=0, �4�

governing water equilibration and myelin growth, respec-
tively. Here, I have replaced � with a coarse-grained average
�̄, since in these experiments, the surfactant sample is always
very disordered, with small randomly oriented lamellar do-
mains �12�. The initial and boundary conditions are

��x � 0,0� = ��− 
,t� = 0, ��0,t� = �eq. �5�

The solution for myelin growth L�t� is given by
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FIG. 5. Myelin growth has different behaviors in different ex-
perimental geometries. �a� Contact experiments: solid line is a
power-law fit, L� t1/2. �b� Immersion-and-punction experiments:
solid line is a fit to Eq. �9�; inset shows the same data and fit plotted
on logarithmic axes. �c� Drying drop experiments: solid line is a
linear fit, L� t.
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L�t� =
2�̄�eq


�D
t1/2, �6�

which has the same time dependence as observed in the ex-
periment �Fig. 5�a��. The prefactor in front of t1/2 is propor-
tional to the equilibrium water volume fraction �eq. Under
the application of osmotic stress �, �eq→�eq��� is sup-
pressed; this implies that myelin growth will also be sup-
pressed, in qualitative agreement with experiments �12�. Us-
ing �̄��	 =2 �m2 /s, D=6�10−3 �m2 /s, and �eq=0.5
into the prefactor m, one obtains 15 �m s−1/2 for the prefac-
tor, which is consistent with experimentally measured values
of 20–40 �m s−1/2.

B. Immersion experiment

In the immersion experiment, initially the hydration gra-
dient is transverse to the bilayers of the well-ordered lamellar
structure. However, the transverse surfactant diffusion con-
stant is ��=0; without surfactant flow, myelins do not grow
�12�. When the needle is pushed into the lamellar structure,
the puncture acts as a point conduit for water invasion into
the surfactant �Fig. 3�b��. There, the hydration gradient will
be radial lateral in orientation, to which the lateral surfactant
diffusion �controlled by �	� can couple, leading to myelin
growth. One can approximate this situation as a 1D problem
in polar coordinates. The relaxation of the hydration profile
and myelin growth are given by

��

�t
= D�1

r

��

�r
+

��

�r2� and
dL

dt
= �	

��

�r


r=r0

, �7�

with the initial and boundary conditions

��r 	 r0,0� = ��
,t� = 0, ��r0,t� = �eq, �8�

where 2r0 is the effective size of the water conduit created by
the needle. Solving for L�t� yields �21�

L�t� =
4�eq�	r0

�2D
�

0


 1 − e−u2Dt/r0
2

u3�J0
2�u� + Y0

2�u��
du . �9�

Compared to the data, Eq. �9� gives a reasonable fit �Fig.
5�b��. Again, the solution contains a prefactor proportional to

�eq, indicating that myelin will be suppressed by applied
osmotic stress. From the fit to Eq. �9�, one obtains D /r0

2

�0.01 s−1 and �	r0 /D�200 �m. If we take �	 =2 �m2 /s,
then the fit implies r0�1 �m as the effective size of the
puncture, a small but physically plausible value. The fit also
implies D�10−2 �m2 /s as the diffusion constant for water
permeation; this is consistent with the independent estimate
of D based on bilayer permeability.

C. Drying drop experiment

In the drying drop experiment, myelins are formed from
pancakes situated at the pinned contact line of a slowly
evaporating drop �Fig. 4�. Because the contact line is station-
ary, water influx across the contact line into the pancake
must be balanced by water loss due to evaporation. The hy-
dration profile ��x� is therefore static, and dL /dt��� �S is a
constant. Myelin growth should be linear in time,

L�t� = �	 � ��St , �10�

in agreement with the experiment �Fig. 5�c��. Fitting the ex-
perimentally observed L�t� yields myelin growth rates of
0.2–0.5 �m /s. This implies that the strength of the hydra-
tion gradient �� �S is approximately 0.1–0.3 �m−1 at the
contact line, which is physically plausible.

IV. MYELIN INSTABILITY: FLOW AND BUCKLING

The drying drop experiment provides the clearest picture
of how a myelin is formed: the initial structure is well or-
dered, the dynamics are slow, and the view is unobstructed.
In this experiment, isolated slowly growing myelins are
formed from small planar surfactant pancakes situated at the
pinned contact line of a slowly evaporating water drop. The
process follows a characteristic sequence; the initially
rounded pancake becomes elongated, develops a pronounced
“waist” which quickly narrows down to a cylinder—the my-
elin �Fig. 6�a�, inset�. The entire event takes place in �10 s,
at the end of which the original pancake has transformed into
a pancake with a myelin growing from its leading edge.

By tracing the pancake/myelin outline with a multipoint
spline, the pancake morphology can be easily monitored as
the myelin forms. Although the formation of a myelin repre-
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FIG. 6. �Color online� �a� The deformation of a pancake to form a myelin. A is the pancake area �shaded�; P and L are, respectively, the
pancake perimeter and the myelin length �traced in thick outline�; the myelin forms at t= t0. �b� The width w at the waist of the elongated
pancake as a function of t0− t.
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sents a drastic change in morphology, the area A of the pan-
cake remains constant throughout. Meanwhile the combined
boundary length P+2L, where P is the perimeter of the pan-
cake alone and L is the myelin length, smoothly increases
across the transition �Fig. 6�a��. This suggests that myelin
formation may be thought as the deformation of a 2D shape
�the pancake� of fixed area subjected to a continuously in-
creasing boundary, with the myelin being made up of two
lengths of excess perimeter.

There is a surprising resemblance between myelin forma-
tion and the breakup of a pendant liquid drop. Both start with
a rounded shape which elongates and develops a rapidly nar-
rowing waist—although the drop eventually breaks up while
the myelin stays attached. In the viscous drop breakup, the
radius r of the waist narrows in time as r� t0− t �22�, where
t0 is the instant of breakup. In myelin formation, using high-
speed �250 images/s� video microscopy, the waist w�t� of the
pancake is found to narrow in a similar way,

w − d � �t0 − t�1.10.1 �11�

�Fig. 6�b��, where d is the myelin diameter and t0 is the
instant when the myelin formed.

The resemblance between myelin formation and drop
breakup, I suggest, is not coincidental but reflects similar
underlying physics. The pendant drop is a three-dimensional
object of fixed volume. Gravity stretches the drop, surface
tension resists the deformation, and the competing forces
lead to a Rayleigh instability, breaking up the drop. The pan-
cake is a quasi-2D object of fixed area. It is stretched by
surfactant flow, bilayer elasticity resists this deformation, and
the competing forces lead to mechanical instability, forming
a myelin. As I hope to show, in myelin formation, as in drop
breakup, the competition between a deforming body force
and a restorative boundary force leads to an instability and
rapid morphological change.

Here, the mixed mechanical properties of the surfactant
lamellar structure are crucial. A bilayer is a fluid membrane
within which surfactant molecules can freely diffuse; but
bending the bilayer costs elastic energy

FB =
�

2
� � �C1 + C2�2dS , �12�

where ���20kBT� is the bending modulus, C1 and C2 are the
principle curvatures, and the integral is over the entire mem-

brane. Stacked into a lamellar structure, the bilayers maintain
a preferred repeat spacing, resisting compression and dila-
tion; moreover, for poorly soluble myelin-forming surfac-
tants, material exchange between disconnected bilayers is
negligible �17�. Thus, laterally, parallel to the bilayers, the
lamellar structure acts as a fluid; but in the transverse direc-
tion it is an elastic solid.

A pancake astride the pinned contact line of a water drop
is more hydrated at its leading edge, inside the drop, than at
its rear. As described in Sec. III, we can describe myelin
growth on the basis of surfactant flow driven by the hydra-
tion gradient across the pancake; the same flow of surfactant
from the rear of the pancake toward its leading edge can also
stretch and deform the pancake, leading to myelin formation.
Additionally, such a flow also increases the overall hydration
of the pancake. As Huang et al. showed, even a slight in-
crease in the overall hydration can overcome the added elas-
tic energy of forming a myelin �23�. In this sense, the hydra-
tion gradient plays the role in myelin formation analogous to
the force of gravity in pendant drop breakup.

Confocal microscopy indicates that the pancake is com-
posed of multiple nested closed bilayers enclosing little free
volume �12�. Therefore even a flat pancake has some bend-
ing energy because the bilayers are sharply folded at the
pancake edge �Fig. 8�a��. Since the bilayer curvatures are
localized at the pancake edge, and since the pancakes are
thin �1–2 �m�, the total bending energy of a pancake is just
proportional to its perimeter, Fp

B=�pP; �p is then the pancake
line tension, the 2D analog to the surface tension of a liquid
drop. We can see its effect in the rounded shapes of the
pancakes prior to myelin formation. Presumably, �p also acts
to resist the deformation of the pancake caused by surfactant
flow.

To complete the analogy with pendant drop breakup, what
instability, if any, does the competition between extensional
surfactant flow and pancake line tension leads to? There is no
Rayleigh instability in 2D fluid flow; however, the geometry
of the myelin/pancake junction �Fig. 7�a�� hints at the exis-
tence of a mechanical instability. The pancake has a line
tension �p; similarly, the myelin has a line tension �bending
energy per unit length� �m. Local force balance at the junc-
tion between pancake and myelin leads to the relation
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FIG. 7. �Color online� �a� The pancake/myelin junction. �b� Local balance of forces determines the static junction angle �. �c� The
distribution of � observed in experiment. �d� The combination P+L as a function of time; P is the pancake perimeter, L is the myelin length.
P+L is clearly discontinuous at t0 when the myelin forms. This is in contrast to Fig. 6�a�, which shows that P+2L is continuous across t0.
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�m = 2�p cos��/2� , �13�

where � is the static junction angle �Fig. 7�b��. Equation �13�
has a solution for � only if �m�2�p, i.e., forming a myelin
from two lengths of perimeter leads to a reduction in bending
elastic energy. Experimentally, � is measured to be
110° –130° �Fig. 7�c��, which implies �m��p. If this impli-
cation is true, then the total elastic energy of the pancake
plus myelin is proportional to the pancake perimeter plus
myelin length,

Fp+m
B = �pP + �mL � P + L if �p � �m. �14�

As a function of time, P+L is discontinuous at t0, the instant
of myelin formation; it drops sharply before resuming
growth at a slower rate �Fig. 6�d��. This suggests that Fp+m

B is
discontinuous at t0, indicative of an instability.

The instability identified here is related to the collapse of
an elastic tube. The transverse cross section of an elongated
pancake, as sketched in Fig. 8�a�, should be the same as that
of a collapsed elastic tube �e.g., a soft water hose when the
pressure head is turned off�. This is because transverse cross
sections of �thin-walled� elastic tubes are closed curves with
minimal bending energies �24�. Starting with an unperturbed
tube with a circular cross section, by lowering the pressure p
inside the tube, the tube will eventually collapse; the cross
section will have a flat region of wall-to-wall contact in the
middle and teardrop-shaped bulges at the edges �25,26�. The
shape of the transverse cross sectional is controlled not by
internal pressure per se but by the ratio ��c2 /a, where c is
the cross-sectional circumference and a is the cross-sectional
area. For an elastic tube, c is fixed; what lowering p does is
to reduce a. This is how the tube cross section evolves from
a circle, where � is minimal, to a collapsed shape, where � is
large.

In myelin formation, the constraints are reversed. Here,
because the pancake has a fixed thickness �lamellar structure
is a solid in the transverse direction�, the area a enclosed by
a transverse cross section must be fixed. Instead, because a
pancake is laterally fluid and can flow, as it elongates, the

width w—and circumference c—of a transverse cross section
in waist area will decrease. For a sufficiently elongated pan-
cake, its width at the waist can become too narrow �� too
small� to sustain a collapsed shape, and the circular trans-
verse cross section of a myelin will become favored.

In the linear elastic regime, the family of transverse cross
sections from pancake to myelin �Fig. 8�b��, where c is a
variable but a is fixed, can be obtained numerically; I follow
the calculation of Flaherty et al. for collapsing elastic tubes
�25�, modified to reflect the constraints appropriate to myelin
formation �see the Appendix�. The bending energy of each
transverse cross section,

fB =
�

2
� C2ds , �15�

�here C is the curvature, and the integral is along the cross-
sectional circumference� can then be evaluated as a function
of the cross-sectional width w. Plotted against w, fB flattens
to a constant �=2�p� when w is large; but when w�2.3d, the
collapsed cross section is unstable; fB falls with decreasing
w, reaching its minimum value �=�m� at w=d and a circular
cross section—a myelin �Fig. 8�b��. This calculation indi-
cates �m��p, consistent with the estimate made on the basis
of balance of forces at the myelin/pancake junction. Inserting
the calculated value of �m /�p into Eq. �13� yields a myelin/
pancake junction angle �=119°, in good agreement with the
experiment.

If the instability described above is indeed responsible for
myelin formation, then its dynamics should be controlled by
surfactant flow and bilayer elasticity. Just as dimensional
analysis can be used to analyze the dynamics of fluid insta-
bilities, e.g., drop breakup, a similar analysis can be applied
to myelin formation. The relevant physical parameters here
are the 2D pancake viscosity �p �dimension MT−1�, the line
tension �p �dimension MLT−2�, the reduced waist width w
−d, and t0− t. From these one can construct only a single
dimensionless group,
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FIG. 8. �Color online� �a� Schematic of a pancake/myelin complex, with transverse cross sections �shaded� showing its nested lamellar
structure. The transverse cross section of the pancake looks like that of a collapsed elastic tube, while the transverse cross section of the
myelin is circular. �b� The cross-sectional bending energy fB as a function of w, the width of the transverse cross section; d is the diameter
of the resulting myelin. Shown above the curve is a sequence of calculated cross sections that would be obtained by a transverse cut across
the narrow waist of the elongated pancake, as indicated by the arrows in the photographic inset. These show the transition from elongated
pancake �wide cross section that is collapsed in the middle� to the myelin �circular cross section�; the transverse cross section narrows in
width approaching myelin formation, but the area a it encloses is constant.
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�p

�p
� t0 − t

w − d
� ⇒ w − d � t0 − t . �16�

The implied linear dependence of w on t0− t is consistent
with experimental observations. One may further estimate
the velocity �p /�p. Taking �p=�m�N� /d, where N�100 is
the number of nested bilayers, ��10−19 J is the bending
modulus of a single bilayer, and d�1 �m is the myelin
diameter; and taking �p�N�, where ��10 cP �m is the
2D viscosity of a single bilayer �27�, one obtains �p /�p
�10 �m /s. This compares well to the experimentally mea-
sured velocity ��1 �m /s�.

Finally, this model suggests that the hydration gradient is
not the only force which can lead to myelins. Any body force
�such as shear stress� can also lead to myelin formation as
long as it can sufficiently stretch the pancake. Indeed, my-
elins can be induced to form by shear flows even in the
absence of hydration gradients �12�.

V. SUMMARY

In this paper, I argue the fluid flow of surfactant, driven
by the hydration gradient, results in the formation and
growth of myelins. The immediate consequence of this argu-
ment is that there can be no myelins without surfactant flow.
This gives a natural explanation to the well-known observa-
tion that myelins do not form for temperatures below the
so-called main transition temperature Tm �0 °C for DLPC
and 23 °C for DMPC� �28�. Below Tm, the surfactant tails
freeze into a solid phase and the lamellar structure loses its
lateral fluidity; consequently myelins can no longer form.

The varying growth behaviors as seen in the different ex-
periments, I suggest, are entirely due to the different ways
the driving force, the hydration gradient, relaxes in a given
situation. This is a function of geometry, as well as initial
and boundary conditions. A good test of the model suggested
in Sec. III is to devise additional experimental geometries
and to examine myelin growth in those instances.

While the fluid flow of surfactant is crucial, I suggest that
the initial formation of myelin figures also depends on the
elastic character of the surfactant lamellar structure. In anal-
ogy to a classic fluid instability—the breakup of a pendant
drop—myelin formations is a result of the competition be-
tween bulk surfactant flow, driven by the hydration gradient,
and bilayer bending, manifesting itself as a line tension. The
instability at its heart is closely related to a classic elastic
instability—the buckling and collapse of an elastic tube �in
reverse�. The elastic forces involved here may be measured
directly. By pulling on a well-ordered equilibrium surfactant
lamellar pancake until a myelin is formed, using possibly an
optical tweezer or a microcantilever, one should be able to
determine the pancake edge tension �p and the myelin line
tension �m from the work of deformation. This would be a
direct test of the myelin instability mechanism suggested
here.

The experiments and calculations described here aim to
show that the formation of myelin depends crucially on the
mixed mechanical properties of the surfactant lamellar struc-
ture; the wet soap has to be able to flow as a fluid and buckle

as an elastic solid. Mechanical instabilities in fluids �e.g., the
Rayleigh instability� and elastic solids �e.g., buckling� have
been active subjects of study since the work of Euler; myelin
formation is of a rather less familiar type; a mechanical in-
stability of mixed character in a material where fluid and
elastic properties coexist. A large number of similarly mixed
instabilities must surely exist, given the diversity of liquid
crystalline phases, both thermotropic �temperature con-
trolled� and lyotropic �as in soap�. In particular, some of the
diverse interfacial structures seen in surfactant dissolution
may be understood in terms of mechanical instabilities of the
interface.

Finally, I have not treated an especially striking instability
of the myelins themselves: coiling and the formation of he-
lices �see Fig. 1�. The coiling often appears spontaneously
and can also be induced by the addition of polymers or Ca2+

ions �9,10,29,30�. The case of polymer-induced coiling has
been attributed to the appearance of a spontaneous mem-
brane curvature in the presence of the additive. But in gen-
eral one expects that myelins, being laterally fluid, cannot
support the torsion needed to form helices and coils. The
treatment of myelins in this paper is simplistic in the sense
that, I assume the myelin is perfectly fluid laterally and per-
fectly elastic in the transverse direction. While such a simple
picture appears sufficient when it comes to myelin formation
and growth, the coiling instabilities require more elaborated
treatments �31,32�.
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APPENDIX: CALCULATING THE ELASTIC ENERGIES

1. Linear elasticity: Thin-walled elastic tube

The calculation for the transverse cross section of pan-
cakes and myelins is based on the calculation of Flaherty et
al. �25� for collapsed elastic tubes; it is thus useful to briefly
outline the physics which gives us the cross sections of elas-
tic tubes. The calculation of Flaherty et al. assumes linear
elasticity. For a tube made from a conventional elastic mate-
rial, linear elasticity holds if strains are small; practically,
this is satisfied if the tube wall is thin. Then, the equations of
mechanical equilibrium, which one solves to find the tube
cross sections xt�s�, can be derived from the theory of thin
elastic shells �26�. They can also be derived from minimizing
the energy functional

H�xt�s�� =
�

2
� �C�xt� − 1/rt�2ds −

p

2
� n̂ · xtds , �A1�

where C is the radius of curvature, rt is the radius of the
unperturbed tube, p is the pressure difference between the
interior and exterior of the tube, and n̂ is the outward unit
normal �24�. One seeks solutions xt�s� of the form
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xt�s� = �
0

c �cos ��s�
sin ��s� �ds, C�s� � ���s� , �A2�

where c=2�rt is the tube cross-sectional circumference.
Since c is fixed for an elastic tube, one further requires

xt�s� = xt�s + c�, ��s + c� = � + 2� . �A3�

The second term in H, involving p, is simply −pa, where
a is the area enclosed by xt. This term constrains the tube
cross section, whose circumference c is fixed, to enclose an
area a �which is set by the pressure difference p�. The first
term in H, involving the curvature C, is the elastic energy of
the transverse cross section; this term is just fB, the cross-
sectional bending energy as defined in Eq. �15�, plus a con-
stant. Thus xt is a cross section of circumference c �which is
fixed�, enclosing an area a �which varies as a function of p�,
whose cross-sectional bending energy fB is minimal. Finally
p, being a dimensional quantity, cannot be the parameter
which characterizes the cross-sectional shape, instead, that
role is played by the dimensionless ratio �=c2 /a.

The transverse cross sections of the pancake, like those of
the elastic tube, minimizes the cross-sectional bending en-
ergy for a given �. But here the constraint to shape evolution
is different; a is fixed and c varies as the cross-sectional
width w varies. The control parameter is still �, and so we
can obtain a pancake cross section simply by rescaling a
similarly shaped elastic tube cross section. If xt�s� is an elas-
tic tube cross section with fixed circumference c enclosing a
variable area a, a pancake cross section xp�s�� of the same
shape �having the same value of ��, with variable circumfer-
ence c� enclosing a fixed area a�, is given by

xp�s�� = �a�

a
�1/2

xt�s� . �A4�

Once the family of elastic tube cross sections has been
found, applying Eq. �A4� will yield a corresponding family
of pancake cross section, whose widths and cross-sectional
bending energies can be evaluated. The curve in Fig. 8�b�
was calculated from 1500 pancake cross sections, whose
cross-sectional width w was varied systematically from 1 to
�4 times the myelin diameter d.

2. Thick walls: Effective bending modulus �eff

The agreement between the previous calculation, based on
thin-walled tubes, and experimental observation of myelin
formation may be surprising. With a thin-walled tube, any
radius of curvature will be large compared to wall thickness;
therefore strains are small and linear elasticity applies. With
thick-walled tubes there can be large strains and nonlineari-
ties.

For a conventional elastic material, if a slab of thickness �
is bent through a radius of curvature R, the maximum strain
within the slab will be of the order of � /R; when R��, the
maximum strain is of order 1 and the linear elasticity breaks
down. This means that the slab bending modulus will be a
function of the radius of curvature rather than a constant.

It may appear that the previous calculation cannot apply
to a thick-walled pancake with N�100 bilayers. However, a

lamellar structure of surfactant bilayers is not a conventional
elastic material; the bilayers are fluid, and adjacent bilayers
are free to slide past each other. Thus the bending of each
bilayer can be considered independent, subject only to the
requirement of a fixed bilayer repeat spacing d0; the total
cross-sectional bending energy of a N-layer pancake is just
the sum of each bilayer’s individual contribution. We can
rewrite this sum in terms of the bending of a single median
surface s̄ and a curvature-dependent effective bending modu-
lus �eff,

fB =
�

2 �
i=1

N � Ci
2dsi �

1

2
� �effC̄

2ds̄ . �A5�

For large N, we can make the continuum approximation
where the bilayer si→s�h� is labeled by its displacement h
from the median surface,

fB =
�

2
�

−�/2

�/2 � ds�h�

�R̄ + h�2

dh

d0
�

1

2
� �eff

R̄2
ds̄ , �A6�

where �=Nd0 and R̄=1 / C̄ is the radius of curvature at the
median surface �Fig. 9�.

If the curvature C̄ on s̄ is approximately constant over
length scales comparable to �, then due to the fact that the
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FIG. 10. The effective bending modulus �eff of N bilayers as a

function of R̄, the median radius of curvature; �=Nd0 is the total
thickness of the N-bilayer lamellar structure.
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FIG. 9. �Color online� The transverse cross section of a pancake
with wall thickness �. The solid line is the median surface s̄; the
dashed line s�h� is a surface �bilayer� displaced by h from s̄.
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lamellar repeat spacing is fixed, the differential arclengths
ds�h� on surface s�h� and ds̄ on s̄ are related by

ds�h� =
R̄ + h

R̄
ds̄ . �A7�

Inserting this relation into Eq. �A6� yields the following ex-
pression for �eff:

�eff = �� R̄

d0
�log� R̄ + �/2

R̄ − �/2
� . �A8�

As shown in Fig. 10, �eff has significant variations with R̄

only close to the singular limit of R̄=� /2. Therefore a con-
stant bending modulus independent of local curvature, which
is a consequence of linear elasticity, should remain an excel-
lent approximation. The analysis for myelin formation based
on thin-walled tubes should hold even for thick-walled pan-
cakes with many bilayers.
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